Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 10: 352, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024332

RESUMO

This study aimed to investigate the effects of short-duration creatine monohydrate supplementation on anaerobic capacity (AC), anaerobic energy pathways, and time-to-exhaustion during high-intensity running. Fourteen healthy men underwent a graded exercise test (GXT) followed by a O2max confirmation test, 5 submaximal efforts, and 4 supramaximal running bouts at 115% of V ˙ O2max intensity (the first two supramaximal sessions were applied as familiarization trials) to measure the AC using two procedures; the maximum accumulated oxygen deficit (MAOD) and non-oxidative pathways energetics sum (AC[La-]+EPOCfast). The investigation was conducted in a single-blind and placebo-controlled manner, with participants performing the efforts first after being supplemented with a placebo (dextrose 20 g⋅day-1 for 5 days), and then, after a 7 day "placebo" washout period, they started the same procedure under creatine supplementation (20 g⋅day-1 for 5 days. This order was chosen due to the prolonged washout of creatine. MAOD was not different between placebo (3.35 ± 0.65 L) and creatine conditions (3.39 ± 0.79 L; P = 0.58) and presented a negligible effect [effect size (ES) = 0.08], similar to, AC[La-]+EPOCfast (placebo condition (3.66 ± 0.79 Land under creatine ingestion 3.82 ± 0.85 L; P = 0.07) presenting a small effect (ES = 0.20). The energetics from the phosphagen pathway increased significantly after creatine supplementation (1.66 ± 0.40 L) compared to the placebo condition (1.55 ± 0.42 L; P = 0.03). However, the glycolytic and oxidative pathways were not different between conditions. Furthermore, time to exhaustion did not differ between placebo (160.79 ± 37.76 s) and creatine conditions (163.64 ± 38.72; P = 0.49). Therefore, we can conclude that creatine supplementation improves the phosphagen energy contribution, but with no statistical effect on AC or time to exhaustion in supramaximal running.

2.
Sci Rep ; 7: 42485, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28211905

RESUMO

The aim was to verify the validity (i.e., study A) and reliability (i.e., study B) of the alternative maximal accumulated oxygen deficit determined using onlya supramaximal effort (MAODALT)to estimate anaerobic capacity [i.e., estimated by the gold standard maximal accumulated oxygen deficit method (MAOD)] during cycling. In study A, the effects of supramaximal intensities on MAODALT and the comparison with the MAOD were investigated in fourteen active subjects (26 ± 6 years). In study B, the test-retest reliability was investigated, where fourteen male amateur cyclists (29 ± 5 years) performed the MAODALT twice at 115% of the intensity associated to maximal oxygen uptake (). MAODALT determined at 130 and 150% of was lower than MAOD (p ≤ 0.048), but no differences between MAODALT determined at 100, 105, 110, 115, 120 and 140% of (3.58 ± 0.53L; 3.58 ± 0.59L; 3.53 ± 0.52L; 3.48 ± 0.72L; 3.52 ± 0.61L and 3.46 ± 0.69L, respectively) with MAOD (3.99 ± 0.64L). The MAODALT determined from the intensities between 110 and 120% of presented the better agreement and concordance with MAOD. In the test-retest, the MAODALT was not different (p > 0.05), showed high reproducibility when expressed in absolute values (ICC = 0.96, p < 0.01), and a good level of agreement in the Bland-Altman plot analysis (mean differences ± CI95%:-0.16 ± 0.53L). Thus, the MAODALT seems to be valid and reliable to assess anaerobic capacity in cycling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...